Abstract
Nonnegative matrix factorization (NMF) is a widely used hyperspectral unmixing model which decomposes a known hyperspectral data matrix into two unknown matrices, i.e., endmember matrix and abundance matrix. Due to the use of least-squares loss, the NMF model is usually sensitive to noise or outliers. To improve its robustness, we introduce a general robust loss function to replace the traditional least-squares loss and propose a general loss-based NMF (GLNMF) model for hyperspectral unmixing in this letter. The general loss function is a superset of many common robust loss functions and is suitable for handling different types of noise. Experimental results on simulated and real hyperspectral data sets demonstrate that our GLNMF model is more accurate and robust than existing NMF methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.