Abstract

We extend the hyperdynamics method developed for low-dimensional energy-dominated systems, to simulate slow dynamics in more general atomistic systems. We show that a few functionals of the pair distribution function forms a low-dimensional collective space, which is a good approximation to distinguish stable and transitional conformations. A bias potential that raises the energy in stable regions, where the system is at local equilibrium, is constructed in the pair-correlation space on the fly. Thus a new MD scheme is present to study any time-scale dynamics with atomic details. We examine the slow gas-liquid transition of Lennard-Jones systems and show that this method can generate correct long-time dynamics and focus on the transition conformations without prior knowledge of the systems. We also discuss the application and possible improvement of the method for more complex systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.