Abstract

SDRC SUPERB is a general purpose finite element program that performs linear static, dynamic and steady state heat conduction analyses of structures made of isotropic and/or orthotropic elastic materials having temperature dependent properties. The finite element library of SUPERB contains isoparametric plane stress, plane strain, flat plate, curved shell, solid type curved shell and solid elements in addition to conventional beam and spring elements. Linear, quadratic and cubic interpolation functions are available for all isoparametric elements. Independent parameters such as displacements and temperatures are obtained from SUPERB using the stiffness method of analysis. The remaining dependent parameters, such as stresses and strains, are evaluated at element gauss points and extrapolated to nodal locations. Averaged values are given as final output. The graphic capabilities of SUPERB consists of geometry and distorted geometry plotting, and stress, strain and temperature contouring. Contours are plotted at user defined cutting planes for solids and at top, middle or bottom surfaces for plate and shell types of structures. In the first part of this paper, the program capabilities of SUPERB are summarized. Extrapolation techniques used for determining dependent nodal parameters and for contour plotting are explained in the second part of the paper. Behavior of standard, wedge and transition type isoparametric elements and the effect of interpolation function orders on accuracy are discussed in the third part. The results of several illustrative problems are included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.