Abstract

Position-dependent geometric errors (PDGEs) of rotary axis affect the accuracy of the multi-axis machine tool. However, many PDGE identification methods were not general enough and not applicable when the structure of the machine tool was limited or changed. In this paper, a general PDGE identification method with single-axis driven was proposed. Firstly, the comprehensive length change model of the double-ball bar (DBB) was established. The simplification was conducted through the constraint condition to obtain the identification matrix. Then, the effect of the installation errors of the DBB was analyzed and eliminated. Simulations were carried out to validate the correctness of the proposed method when considering the installation errors. Next 10 measurement patterns were determined according to the structure limitation of the small-size 5-axis machine tool. Totally 364 combinations with full rank identification matrix are available. Finally, the prediction experiments and analysis for standard deviation were conducted to further validate the effectiveness of the proposed method. It turned out that the small condition number of the identification matrix can more likely achieve high accuracy. And an improved combination using 5 patterns was proposed with the same accuracy achieved compared to that using a total of 10 patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call