Abstract
Catalytic and enantioselective synthesis of amino acids is a subject of intense interest in the field of asymmetric catalysis. Traditionally, researchers have concentrated their efforts largely on the design and discovery of enantiopure catalysts for the Strecker reaction, alkylation of tert-butyl gylcinate-benzophenone, electrophilic amination of carbonyl compounds, and hydrogenation of N-acyl-aminoacrylic acid; however, the scope of these reactions is limited. In this paper, we report on a different approach to amino acids based on an expeditious route to enantiopure allylic amines. A highly enantioselective and catalytic vinylation of aldehydes leads to allylic alcohols that are then transformed to the allylic amines via Overman's [3,3]-sigmatropic rearrangement of imidates. Oxidative cleavage of the allylic amines furnishes the amino acids in good yields and excellent ee's. The scope and utility of this method are demonstrated by the synthesis of challenging allylic amines and their subsequent transformation to valuable nonproteinogenic amino acids, including both D and L configured (1-adamantyl)glycine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.