Abstract

Complexity of linear finite-impulse-response (FIR) equalizers is proportional to the square of the number of nonzero taps in the filter. This makes equalization of channels with long impulse responses using either zero-forcing or minimum mean square error (MMSE) filters computationally expensive. Sparse equalization is a widely-used technique to solve this problem. In this paper, a general framework is provided that transforms the problem of sparse linear equalizers (LEs) design into the problem of sparsest-approximation of a vector in different dictionaries. In addition, some possible choices of sparsifying dictionaries in this framework are discussed. Furthermore, the worst-case coherence of some of these dictionaries, which determines their sparsifying strength, are analytically and/or numerically evaluated. Finally, the usefulness of the proposed framework for the design of sparse FIR LEs is validated through numerical experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call