Abstract

A general framework for the analysis and design of a class of tubular linear permanent magnet machines is described. The open-circuit and armature reaction magnetic field distributions are established analytically in terms of a magnetic vector potential and cylindrical coordinate formulation, and the results are validated extensively by comparison with finite element analyses. The analytical field solutions allow the prediction of the thrust force, the winding emf, and the self- and mutual-winding inductances in closed forms. These facilitate the characterization of tubular machine topologies and provide a basis for comparative studies, design optimization, and machine dynamic modeling. Some practical issues, such as the effects of slotting and fringing, have also been accounted for and validated by measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.