Abstract
A mathematical framework is provided for a substructuring-based domain decomposition (DD) approach for nonlocal problems that features interactions between points separated by a finite distance. Here, by substructuring it is meant that a traditional geometric configuration for local partial differential equation (PDE) problems is used in which a computational domain is subdivided into non-overlapping subdomains. In the nonlocal setting, this approach is substructuring-based in the sense that those subdomains interact with neighboring domains over interface regions having finite volume, in contrast to the local PDE setting in which interfaces are lower dimensional manifolds separating abutting subdomains. Key results include the equivalence between the global, single-domain nonlocal problem and its multi-domain reformulation, both at the continuous and discrete levels. These results provide the rigorous foundation necessary for the development of efficient solution strategies for nonlocal DD methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.