Abstract

We study localization of classical waves in random media in the general framework introduced in Part I of this work. This framework allows for two random coefficients, encompasses acoustic waves with random position dependent compressibility and mass density, elastic waves with random position dependent Lame moduli and mass density, electromagnetic waves with random position dependent magnetic permeability and dielectric constant, and allows for anisotropy. We show exponential localization (Anderson localization) and strong Hilbert–Schmidt dynamical localization for random perturbations of periodic media with a spectral gap.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call