Abstract

This paper presents a general mean-field game (GMFG) framework for simultaneous learning and decision making in stochastic games with a large population. It first establishes the existence of a unique Nash equilibrium to this GMFG, and it demonstrates that naively combining reinforcement learning with the fixed-point approach in classical mean-field games yields unstable algorithms. It then proposes value-based and policy-based reinforcement learning algorithms (GMF-V and GMF-P, respectively) with smoothed policies, with analysis of their convergence properties and computational complexities. Experiments on an equilibrium product pricing problem demonstrate that two specific instantiations of GMF-V with Q-learning and GMF-P with trust region policy optimization—GMF-V-Q and GMF-P-TRPO, respectively—are both efficient and robust in the GMFG setting. Moreover, their performance is superior in convergence speed, accuracy, and stability when compared with existing algorithms for multiagent reinforcement learning in the N-player setting. Funding: X. Guo acknowledges the generous support from Coleman Fung Chair endowment fund and the Tsinghua-Berkeley-Shenzhen-Institute.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.