Abstract

This is the second paper of a four-part series of papers on the development of a general framework for error analysis in measurement-based geographic information systems (MBGIS). In this paper, we discuss the problem of point-in-polygon analysis under randomness, i.e., with random measurement error (ME). It is well known that overlay is one of the most important operations in GIS, and point-in-polygon analysis is a basic class of overlay and query problems. Though it is a classic problem, it has, however, not been addressed appropriately. With ME in the location of the vertices of a polygon, the resulting random polygons may undergo complex changes, so that the point-in-polygon problem may become theoretically and practically ill-defined. That is, there is a possibility that we cannot answer whether a random point is inside a random polygon if the polygon is not simple and cannot form a region. For the point-in-triangle problem, however, such a case need not be considered since any triangle always forms an interior or region. To formulate the general point-in-polygon problem in a suitable way, a conditional probability mechanism is first introduced in order to accurately characterize the nature of the problem and establish the basis for further analysis. For the point-in-triangle problem, four quadratic forms in the joint coordinate vectors of a point and the vertices of the triangle are constructed. The probability model for the point-in-triangle problem is then established by the identification of signs of these quadratic form variables. Our basic idea for solving a general point-in-polygon (concave or convex) problem is to convert it into several point-in-triangle problems under a certain condition. By solving each point-in-triangle problem and summing the solutions, the probability model for a general point-in-polygon analysis is constructed. The simplicity of the algebra-based approach is that from using these quadratic forms, we can circumvent the complex geometrical relations between a random point and a random polygon (convex or concave) that one has to deal with in any geometric method when probability is computed. The theoretical arguments are substantiated by simulation experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.