Abstract
In this work, we present a general formulation for the evaluation of many-electron integrals which arise when traditional one particle expansions are augmented with explicitly correlated Gaussian geminal functions. The integrand is expressed as a product of charge distributions, one for each electron, multiplied by one or more Gaussian geminal factors. Our formulation begins by focusing on the quadratic form that arises in the general n-electron integral. Using the Rys polynomial method for the evaluation of potential energy integrals, we derive a general formula for the evaluation of any n-electron integral. This general expression contains four parameters ω, θ, v, and h, which can be evaluated by an examination of the general quadratic form. Our analysis contains general expressions for any n-electron integral over s-type functions as well as the recursion needed to build up arbitrary angular momentum. The general recursion relation requires at most n + 1 terms for any n-electron integral. To illustrate the general method, we develop explicit expressions for the evaluation of two, three, and four particle electron repulsion integrals as well as two and three particle overlap and nuclear attraction integrals. We conclude our exposition with a discussion of a preliminary computational implementation as well as general computational requirements. Implementation on parallel computers is briefly discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.