Abstract
In this paper we prove a theorem which ensures the existence of a unique fixed point and is applicable to contractive type mappings as well as mappings which do not satisfy any contractive type condition. Our theorem contains the well known fixed point theorems respectively due to Banach, Kannan, Chatterjea, Ciric and Suzuki as particular cases; and is independent of Caristi?s fixed point theorem. Moreover, our theorem provides new solutions to Rhoades problem on discontinuity at the fixed point as it admits contractive mappings which are discontinuous at the fixed point. It is also shown that the weaker form of continuity employed by us is a necessary and sufficient condition for the existence of the fixed point.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.