Abstract

Discretizing a symmetric elliptic boundary value problem by a finite element method results in a system of linear equations with a symmetric positive definite coefficient matrix. This system can be solved iteratively by a preconditioned conjugate gradient method. In this paper a preconditioning matrix is proposed that can be constructed for all finite element methods if a mild condition for the node numbering is fulfilled. Such a numbering can be constructed using a variant of the reverse Cuthill-McKee algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.