Abstract
Liquid–vapor flows with phase transitions have a wide range of applications. Isothermal two-phase flows described by a single set of isothermal Euler equations, where the mass transfer is modeled by a kinetic relation, have been investigated analytically in [M. Hantke, W. Dreyer and G. Warnecke, Exact solutions to the Riemann problem for compressible isothermal Euler equations for two-phase flows with and without phase transition, Quart. Appl. Math. 71(3) (2013) 509–540]. This work was restricted to liquid water and its vapor modeled by linear equations of state. The focus of this work lies on the generalization of the primary results to arbitrary substances, arbitrary equations of state and thus a more general kinetic relation. We prove existence and uniqueness results for Riemann problems. In particular, nucleation and cavitation are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.