Abstract

While most masks have a limited effect on personal protection, how effective are they for collective protection? How to enlighten the design of masks from the perspective of collective dynamics? In this paper, we assume three preferences in the population: (i) never wearing a mask; (ii) wearing a mask if and only if infected; (iii) always wearing a mask. We study the epidemic transmission in an open system within the Susceptible-Infected-Recovered (SIR) model framework. We use agent-based Monte Carlo simulation and mean-field differential equations to investigate the model, respectively. Ternary heat maps show that wearing masks is always beneficial in curbing the spread of the epidemic. Based on the model, we investigate the potential implications of different mask designs from the perspective of collective dynamics. The results show that strengthening the filterability of the mask from the face to the outside is more effective in most parameter spaces because it acts on individuals with both preferences (ii) and (iii). However, when the fraction of individuals always wearing a mask achieves a critical point, strengthening the filterability from outside to the face becomes more effective because of the emerging hidden reality that the infected individuals become too few to utilize the filterability from their face to outside fully.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call