Abstract
Selective membrane dehumidification is a promising technology for energy efficient air dehumidification in buildings and has been ranked as a top alternative technology by the Department of Energy. One critical area that needs to be addressed is system modeling that incorporates device mass transfer characteristics and sizing. This work develops, validates, and applies a simple effectiveness-number of transfer units (ε-NTU) modeling framework for dehumidification technologies that can be used to predict performance and determine required membrane area for a wide range of technologies, including energy recovery ventilators, vacuum membrane dehumidification, and desiccant dehumidifiers. Although the ε-NTU method is a well-established framework for sizing and modeling heat exchangers, past attempts to create εL-NTUL(meaning ε-NTU for latent loads) models for dehumidification (referred to as latent cooling): (1) don’t agree on the definition of NTUL, (2) are not fully analogous to the heat transfer definition of NTU, (3) cannot be easily applied across all technologies, (4) use humidity ratio, not vapor pressure, as the driving force, and (5) are often complex or lack a fundamental basis. In this work, we develop an effectiveness-NTU model for membrane humidity exchangers that is based on vapor pressure differences, employs a novel definition of the latent number of transfer units for dehumidification applications (NTUL) and is fully analogous to the heat transfer effectiveness-NTU models employed for sensible heat exchangers. The resulting εL-NTUL relationships are validated against experimental data with a maximum error of 1.2%. The overall methodology is applied in case studies for vacuum membrane dehumidification system sizing showing that the ratio of required membrane area per building floor area ranges between 0.1 and 3.5 depending on the building type and operating conditions. Finally, the framework is further generalized for applicability to any gas separation application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.