Abstract

We consider non-preemptively scheduling a bag of independent mixed tasks (hard, firm and soft) in computational grids. Based upon task type, we construct a novel generalized distributed scheduler (GDS) for scheduling tasks with different priorities and deadlines. GDS is scalable and does not require knowledge of the global state of the system. It is composed of several phases: a multiple attribute ranking phase, a shuffling phase, and a task-resource matched peer to peer dispatching phase. Results of exhaustive simulation demonstrate that with respect to the number of high-priority tasks meeting deadlines, GDS outperforms existing approaches by 10%–25% without degrading schedulability of other tasks. Indeed, with respect to the total number of schedulable tasks meeting deadlines, GDS is slightly better. Thus, GDS not only maximizes the number of mission-critical tasks meeting deadlines, but it does so without degrading the overall performance. The results have been further confirmed by examining each component phase of GDS. Given that fully known global information is time intensive to obtain, the performance of GDS is significant. GDS is highly scalable both in terms of processors and number of tasks—indeed it provides superior performance over existing algorithms as the number of tasks increase. Also, GDS incorporates a shuffle phase that moves hard tasks ahead improving their temporal fault tolerance. Furthermore, since GDS can handle mixed task types, it paves the way to open the grid to make it amenable for commercialization. The complexity of GDS is O ( n 2 m ) where n is the number of tasks and m the number of machines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.