Abstract

Driven by the increasing development and complexity of bulk power systems, the requirements of phasor estimation methods differ for different scenarios and applications. In this study, a general design method for phasor estimation algorithms in different applications is proposed based on a complex finite impulse response (FIR) bandpass filter. A design framework based on mathematical error models is proposed to facilitate the design of a complex bandpass filter for different requirements and to reduce the trial and error process. The general error models between the filter gain and the error limitations of all variables measured by the phasor measurement units (PMUs) are established separately, according to the absolute value inequality. The filter design criteria obtained from the error models can determine the passband and stopband gain range of the complex bandpass filters. Three phasor algorithms for different classes of PMUs are designed, and their performances are validated and compared using experimental tests. The results demonstrate that the proposed method can design phasor algorithms to provide accurate measurements under different scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call