Abstract

Today’s data pose unprecedented challenges to statisticians. It may be incomplete, corrupted or exposed to some unknown source of contamination. We need new methods and theories to grapple with these challenges. Robust estimation is one of the revived fields with potential to accommodate such complexity and glean useful information from modern datasets. Following our recent work on high dimensional robust covariance matrix estimation, we establish a general decision theory for robust statistics under Huber’s $\epsilon$-contamination model. We propose a solution using Scheffe estimate to a robust two-point testing problem that leads to the construction of robust estimators adaptive to the proportion of contamination. Applying the general theory, we construct robust estimators for nonparametric density estimation, sparse linear regression and low-rank trace regression. We show that these new estimators achieve the minimax rate with optimal dependence on the contamination proportion. This testing procedure, Scheffe estimate, also enjoys an optimal rate in the exponent of the testing error, which may be of independent interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.