Abstract
<p style='text-indent:20px;'>In this paper, we investigate the general decay rate of the solutions for a class of plate equations with memory term in the whole space <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{R}^n $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ n\geq 1 $\end{document}</tex-math></inline-formula>, given by</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} u_{tt}+\Delta^2 u+ u+ \int_0^t g(t-s)A u(s)ds = 0, \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>with <inline-formula><tex-math id="M3">\begin{document}$ A = \Delta $\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id="M4">\begin{document}$ A = -Id $\end{document}</tex-math></inline-formula>. We use the energy method in the Fourier space to establish several general decay results which improve many recent results in the literature. We also present two illustrative examples by the end.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.