Abstract

AbstractWe propose a simple way to define a field‐line‐following, general curvilinear coordinate system for a general magnetic field. This definition of field‐line‐following coordinate system reduces to a usual definition of dipole coordinate system when the magnetic field is approximated by an axisymmetric dipole. In this way, it can facilitate the numerical implementation by enabling validation of various metric terms computed numerically against those defined analytically in the case of the dipole field. Steps involved in grid generation are also sketched. Highly accurate results are obtained using the high‐order ordinary differential equation (ODE) solver to solve the general magnetic field line equations. The accuracy and consistency of the numerical implementation are validated against analytical results in the case of a dipole field. Numerical results show that this field‐line‐following coordinate system for the general magnetic field, like the coordinates for the dipole field, is also an Euler potential or Clebsch type coordinate system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.