Abstract

SUMMARY A general correspondence principle is presented that relates any time-domain electromagnetic diffusion field to an electromagnetic wavefield in a ‘corresponding’ configuration. The principle applies to arbitrarily inhomogeneous and anisotropic media and arbitrary transmitters and receivers. For the correspondence between the two types of electromagnetic fields to hold, the electric conductivity in the diffusive case and the permittivity in the wavefield case should have the same spatial variation, while the permeability distributions in space in the two cases are to be identical. Essential steps in the derivation of the correspondence principle are the use of the time Laplace transformation of causal signals, taken at real, positive values of the transform parameter, the Schouten-Van der Pol theorem in the theory of the Laplace transformation, and the reliance upon Lerch’s theorem of the uniqueness of the interrelation between causal field quantities and their time-Laplace-transform representations at real, positive values of the transform parameter. Correspondence is then established between the tensorial Green’s functions in the two cases, where the Green’s functions are the point-receiver responses (either electric or magnetic field) to point-transmitter excitations (either electric- or magnetic-current source). Through the correspondence principle, all transient electromagnetic wavefields (where losses are neglected) have as a counterpart a transient diffusive electromagnetic field (where the electric displacement current is neglected). The interrelation yields the tool to compare quantitatively the potentialities of the two types of fields in transient electromagnetic geophysical prospecting. Finally, a general medium-parameter scaling law for time-domain electromagnetic wavefields is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.