Abstract

AbstractWe establish a central limit theorem for multivariate summary statistics of nonstationary α‐mixing spatial point processes and a subsampling estimator of the covariance matrix of such statistics. The central limit theorem is crucial for establishing asymptotic properties of estimators in statistics for spatial point processes. The covariance matrix subsampling estimator is flexible and model free. It is needed, for example, to construct confidence intervals and ellipsoids based on asymptotic normality of estimators. We also provide a simulation study investigating an application of our results to estimating functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.