Abstract

The growth of a single-mode perturbation is described by a buoyancy–drag equation, which describes all instability stages (linear, nonlinear and asymptotic) at time-dependent Atwood number and acceleration profile. The evolution of a multimode spectrum of perturbations from a short wavelength random noise is described using a single characteristic wavelength. The temporal evolution of this wavelength allows the description of both the linear stage and the late time self-similar behavior. Model results are compared to full two-dimensional numerical simulations and shock-tube experiments of random perturbations, studying the various stages of the evolution. Extensions to the model for more complicated flows are suggested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call