Abstract

There is uncertainty introduced when a cortical surface based model derived from an anatomical MRI is used to reconstruct neural activity with MEG data. This is a specific case of a problem with uncertainty in parameters on which M/EEG lead fields depend non-linearly. Here we present a general mathematical treatment of any such problem with a particular focus on co-registration. We use a Metropolis search followed by Bayesian Model Averaging over multiple sparse prior source inversions with different headlocation/orientation parameters. Based on MEG data alone we can locate the cortex to within 4 mm at empirically realistic signal to noise ratios. We also show that this process gives improved posterior distributions on the estimated current distributions, and can be extended to make inference on the locations of local maxima by providing confidence intervals for each source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.