Abstract

This paper presents a general Bayesian model for speaker verification tasks. It is a generative probability model. Due to its simple analytical property, a computationally efficient expectation-maximization algorithm can be derived to obtain the model parameters. A closedform solution, which allows the scalable size of enrollment set, is given in a full Bayesian way for making speaker verification decisions. Factor analysis technique is employed to model the speaker-specific components, then the redundant information in this model will be dropped. Experimental results are evaluated by both equal error rate and minimum detection cost function. The proposed approach shows promising results on the National institute of standards and technology (NIST) Speaker recognition evaluation (SRE) 2010 extended and 2012 core tasks. Significant improvement is obtained when comparing with Gaussian probabilistic linear discriminant analysis, especially under phone-call conditions and mismatched train-test channel conditions. Contrast experimental results with other popular generative probability models are also presented in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.