Abstract
This paper develops a general asymptotic theory for the estimation of strictly stationary and ergodic time series models. Under simple conditions that are straightforward to check, we establish the strong consistency, the rate of strong convergence and the asymptotic normality of a general class of estimators that includes LSE, MLE, and some M-type estimators. As an application, we verify the assumptions for the long-memory fractional ARIMA model. Other examples include the GARCH(1,1) model, random coefficient AR(1) model and the threshold MA(1) model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.