Abstract
This article develops a general approach to time periodic incompressible fluid flow problems and semilinear evolution equations. It yields, on the one hand, a unified approach to various classical problems in incompressible fluid flow and, on the other hand, gives new results for periodic solutions to the Navier–Stokes–Oseen flow, the Navier–Stokes flow past rotating obstacles, and, in the geophysical setting, for Ornstein–Uhlenbeck and various diffusion equations with rough coefficients. The method is based on a combination of interpolation and topological arguments, as well as on the smoothing properties of the linearized equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.