Abstract

A major restriction in the development of a working Rapid Single Flux Quantum (RSFQ) logic circuit with high-Tc superconductors is given by the influence of thermal noise. This gives reason to ask for a general determination of the digital bit error rate. As other approaches, our method of calculating the switching probability is based on the Fokker-Planck equation. In the past few years the bit error rates for a single Josephson junction, SQUIDs and the comparator were calculated by using this theory. We demonstrate numerical solution of the multidimensional Fokker-Planck equation to calculate bit error rates due to thermal noise for a Toggle Flip Flop circuit. In the present work, we combine thermal noise analysis with the effects of process variations in order to derive rules for designing high-Tc RSFQ logic circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.