Abstract

AbstractIn the last few years there has been increased research interest in searching for analytical solutions for the advection–diffusion equation (ADE). By analytical we mean that no approximation is done along the derivation of the solution. There exists a significant literature regarding this theme. For illustration we mention the works of (Rounds 1955; Smith 1957; Scriven, Fisher 1975; Demuth 1978; van Ulden 1978; Nieuwstadt, de Haan 1981; Tagliazucca et al. 1985; Tirabassi 1989; Tirabassi, Rizza 1994; Sharan et al. 1996; Lin, Hildemann 1997; Tirabassi 2003). We note that in these works all solutions are valid for very specialized problems having specific wind and eddy diffusivities vertical profiles. Further, also in the literature there is the ADMM (Advection Diffusion Multilayer Method) approach which solves the two-dimensional ADE with variable wind profile and eddy diffusivity coefficient (Moreira et al. 2006). The main idea relies on the discretization of the Atmospheric Boundary Layer (ABL) in a multilayer domain, assuming in each layer that the eddy diffusivity and wind profile take averaged values. The resulting advection–diffusion equation in each layer is then solved by the Laplace transformation technique. For more details about this methodology see the review work done by (Moreira et al. 2006). We are also aware of the recent work of (Costa et al. 2006), dubbed as GIADMT method (Generalized Integral Advection Diffusion Multilayer Technique), which presented a general solution for the time-dependent three-dimensional ADE, again assuming the stepwise approximation for the eddy diffusivity coefficient and wind profile and proceeding further in similar way according the previous work. To avoid this approximation, in this work we report an analytical general solution for this problem, assuming that the eddy diffusivity coefficient and wind profile are arbitrary functions having a continuous dependence on the vertical and longitudinal variables. Without losing generality we specialize the application in micrometeorology, specially for the problem of simulation of contaminant releasing in the ABL.KeywordsDiffusion EquationAtmospheric Boundary LayerEddy DiffusivityWind ProfilePollutant DispersionThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call