Abstract
As additivity is a very useful property for a distance measure, a general additive distance is proposed under the stationary time-reversible (SR) model of nucleotide substitution or, more generally, under the stationary, time-reversible, and rate variable (SRV) model, which allows rate variation among nucleotide sites. A method for estimating the mean distance and the sampling variance is developed. In addition, a method is developed for estimating the variance-covariance matrix of distances, which is useful for the statistical test of phylogenies and molecular clocks. Computer simulation shows (i) if the sequences are longer than, say, 1000 bp, the SR method is preferable to simpler methods; (ii) the SR method is robust against deviations from time-reversibility; (iii) when the rate varies among sites, the SRV method is much better than the SR method because the distance is seriously underestimated by the SR method; and (iv) our method for estimating the sampling variance is accurate for sequences longer than 500 bp. Finally, a test is constructed for testing whether DNA evolution follows a general Markovian model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences of the United States of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.