Abstract

A novel unified framework of geometry-based stochastic models for the fifth generation (5G) wireless communication systems is proposed in this paper. The proposed general 5G channel model aims at capturing small-scale fading channel characteristics of key 5G communication scenarios, such as massive multiple-input multiple-output, high-speed train, vehicle-to-vehicle, and millimeter wave communications. It is a 3-D non-stationary channel model based on the WINNER II and Saleh-Valenzuela channel models considering array-time cluster evolution. Moreover, it can easily be reduced to various simplified channel models by properly adjusting model parameters. Statistical properties of the proposed general 5G small-scale fading channel model are investigated to demonstrate its capability of capturing channel characteristics of various scenarios, with excellent fitting to some corresponding channel measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call