Abstract
Wilson disease (WD), an autosomal recessive disease caused by mutations in a copper-transporting P-type ATPase (Atp7b), causes severe liver damage. This disease is currently treated with the lifelong use of copper chelation therapy, which has side effects and does not fix copper metabolism. Here, we thoroughly characterized a mouse model of WD, the toxic milk mouse, and used the model to test a gene therapy approach for treating WD. WD mice accumulated copper in the liver from birth; severe copper accumulation and concurrent liver disease were evident by 2 months of age. Intravenously administering an adeno-associated viral (AAV) 8 vector expressing a codon-optimized version of the human ATP7B transgene into 2-month-old WD mice significantly decreased liver copper levels compared with age-matched, uninjected, WD mice. We also observed a significant dose-dependent decrease in liver disease. Male mice injected with 1011 genome copies of AAV8 vector showed only mild histopathological findings with a complete lack of liver fibrosis. Therefore, we conclude that administering gene therapy at the early stages of disease onset is a promising approach for reducing liver damage and correcting copper metabolism in WD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.