Abstract

The analysis of gene expression data has made significant contributions to understanding disease mechanisms and developing new drugs and therapies. In such analysis, gene selection is often required for identifying informative and relevant genes and removing redundant and irrelevant ones. However, this is not an easy task as gene expression data have inherent challenges such as ultra-high dimensionality, biological noise, and measurement errors. This study focuses on the measurement errors in gene selection problems. Typically, high-throughput experiments have their own intrinsic measurement errors, which can result in an increase of falsely discovered genes. To alleviate this problem, this study proposes a gene selection method that takes into account measurement errors using generalized liner measurement error models. The method consists of iterative filtering and selection steps until convergence, leading to fewer false positives and providing stable results under measurement errors. The performance of the proposed method is demonstrated through simulation studies and applied to a lung cancer data set.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call