Abstract

The contribution of the arbuscular mycorrhizal (AM) symbiosis to plant drought tolerance results from a combination of physical, nutritional and cellular effects. However, the exact mechanisms involved in such enhanced tolerance are still a matter of debate. In this study a BiP-encoding gene from the AM fungus Glomus intraradices has been identified after differential hybridization of a cDNA library constructed from the fungus growing in vitro and subjected to drought stress by addition of 25% PEG 6000. Results show that its expression was up-regulated by drought stress not only during in vitro conditions (AM monoxenic cultures) but also ex vitro, when forming natural symbioses with plants. The identification of GiBiP gene provides new evidences that the contribution of AM fungi to the enhanced drought tolerance of the host plant can be mediated by proteins with chaperone-like activity, such as that of BiP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.