Abstract

BackgroundThe first week of human pre-embryo development is characterized by the induction of totipotency and then pluripotency. The understanding of this delicate process will have far reaching implication for in vitro fertilization and regenerative medicine. Human mature MII oocytes and embryonic stem (ES) cells are both able to achieve the feat of cell reprogramming towards pluripotency, either by somatic cell nuclear transfer or by cell fusion, respectively. Comparison of the transcriptome of these two cell types may highlight genes that are involved in pluripotency initiation.ResultsBased on a microarray compendium of 205 samples, we compared the gene expression profile of mature MII oocytes and human ES cells (hESC) to that of somatic tissues. We identified a common oocyte/hESC gene expression profile, which included a strong cell cycle signature, genes associated with pluripotency such as LIN28 and TDGF1, a large chromatin remodelling network (TOP2A, DNMT3B, JARID2, SMARCA5, CBX1, CBX5), 18 different zinc finger transcription factors, including ZNF84, and several still poorly annotated genes such as KLHL7, MRS2, or the Selenophosphate synthetase 1 (SEPHS1). Interestingly, a large set of genes was also found to code for proteins involved in the ubiquitination and proteasome pathway. Upon hESC differentiation into embryoid bodies, the transcription of this pathway declined. In vitro, we observed a selective sensitivity of hESC to the inhibition of the activity of the proteasome.ConclusionThese results shed light on the gene networks that are concurrently overexpressed by the two human cell types with somatic cell reprogramming properties.

Highlights

  • The first week of human pre-embryo development is characterized by the induction of totipotency and pluripotency

  • Quite unexpectedly, Takahashi and Yamanaka have shown that the expression of only four selected transcription factors, OCT3/4, SOX2, CMYC and KLF4, is sufficient to drive a mouse fibroblast into an induced pluripotent stem cell with all the features of embryonic stem cells, including a high growth rate and the ability to form a variety of tissues from all three germ layers in vitro and in vivo [9]

  • Human oocytes and human ES cells (hESC) share a common transcriptome signature To identify a gene expression signature shared by mature oocytes and hESC but not by somatic cells, we confronted 9 oocyte and 29 hESC expression profiles to a transcriptome collection of 167 samples spanning a wide variety of fetal and adult somatic cell samples

Read more

Summary

Introduction

The first week of human pre-embryo development is characterized by the induction of totipotency and pluripotency. Quite unexpectedly, Takahashi and Yamanaka have shown that the expression of only four selected transcription factors, OCT3/4, SOX2, CMYC and KLF4, is sufficient to drive a mouse fibroblast into an induced pluripotent stem cell (iPS) with all the features of embryonic stem cells, including a high growth rate and the ability to form a variety of tissues from all three germ layers in vitro and in vivo [9] These results have been confirmed by other studies, extended to human cells, and applied to non-fibroblastic cells such as mesenchymal stem cells (MSCs), gastric epithelial cells or hepatocytes [10,11,12]. Data from xenopus egg experiments point to nucleosomal ATPases, but these findings await confirmation using mammalian oocytes [14,15]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call