Abstract

Multiple sequence alignment is a method for comparing two or more DNA or protein sequences. Most multiple sequence alignment methods rely on pairwise alignment and Smith-Waterman algorithm [Needleman and Wunsch, 1970; Smith and Waterman, 1981] to generate an alignment hierarchy. Therefore, as the number of sequences increases, the runtime increases exponentially. To resolve this problem, this paper presents a multiple sequence alignment method using a parallel processing suffix tree algorithm to search for common subsequences at one time without pairwise alignment. The cross-matched subsequences among the searched common subsequences may be generated and those cause inexact-matching. So the procedure of masking cross-matching pairs was suggested in this study. The proposed method, improved STC (Suffix Tree Clustering), is summarized as follows: (1) construction of suffix tree; (2) search and overlap of common subsequences; (3) grouping of subsequence pairs; (4) masking of cross-matching airs; and (5) clustering of gene sequences. The new method was successfully evaluated with 23 genes inMus musculus and 22 genes in three species, clustering nine and eight clusters, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.