Abstract

A Gelfand model for a finite group G is a complex representation of G, which is isomorphic to the direct sum of all irreducible representations of G. When G is isomorphic to a subgroup of GLn(ℂ), where ℂ is the field of complex numbers, it has been proved that each G-module over ℂ is isomorphic to a G-submodule in the polynomial ring ℂ[x1,…,xn], and taking the space of zeros of certain G-invariant operators in the Weyl algebra, a finite-dimensional G-space 𝒩G in ℂ[x1,…,xn] can be obtained, which contains all the simple G-modules over ℂ. This type of representation has been named polynomial model. It has been proved that when G is a Coxeter group, the polynomial model is a Gelfand model for G if, and only if, G has not an irreducible factor of type D2n, E7, or E8. This paper presents a model of Gelfand for a Weyl group of type D2n whose construction is based on the same principles as the polynomial model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.