Abstract

Bacterial infection, prolonged inflammation, and insufficient angiogenesis are the main challenges for effective wound repair. In this work, we developed a stretchable, remodeling, self-healing, and antibacterial multifunctional composite hydrogel for infected wound healing. The hydrogel was prepared using tannic acid (TA) and phenylboronic acid-modified gelatin (Gel-BA) through hydrogen bonding and borate ester bonds and incorporated iron-containing bioactive glasses (Fe-BGs) with uniform spherical morphologies and amorphous structures to achieve GTB composite hydrogels. On one hand, the chelation of Fe3+ in Fe-BGs with TA endowed the hydrogel with good photothermal synergistic antibacterial ability; on the other hand, the bioactive Fe3+ and Si ions contained in Fe-BGs can recruit cells and synergistically promote blood vessel formation. In vivo animal experiments showed that the GTB hydrogels remarkably accelerated infected full-thickness skin wound healing by improving granulation tissue formation, collagen deposition, and the formation of nerves and blood vessels while decreasing inflammation. This hydrogel with a dual synergistic effect and ″one stone, two birds″ strategy holds immense potential for wound dressing applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call