Abstract

In this paper a non-linear one-degree-of-freedom model for analysis of gear rattle vibrations in automotive manual transmissions is presented. In order to take into account the damping effects owing to the oil in the gap between two teeth of a meshing gear, a simple one-dimensional model for the oil-film squeeze effects is proposed. The squeeze model assumes that the damping force is proportional to the oil viscosity and to the extension of the oil film in the plane of curvature of the teeth, which may depend on the lubrication conditions (dry sump, splash, bath). The results provided from several numerical simulations, carried out with reference to helical involute tooth pairs, confirm the capability of oil in reducing the high-frequency vibrations subsequent to the impact between the teeth. In particular, the influence exerted by oil viscosity and gap extension on the rattle characteristics is investigated through the analysis of the transient response of the driven gear by imposing a harmonic motion to the driving gear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call