Abstract

Extracting the power lines and pylons automatically and accurately from airborne LiDAR data is a critical step in inspecting the routine power line, especially in the remote mountainous areas. However, challenges arise in using existing methods to extract the targets from large scenarios of remote mountainous areas since the terrain is undulating, and the features are difficult to distinguish. In this article, to overcome these challenges, we propose a graph convolutional network (GCN)-based method to extract power lines and pylons from Airborne LiDAR point clouds. First, data augmentation and near-ground filtering methods are developed to overcome the problems of insufficient and imbalanced samples in the LiDAR data. Then, a GCN-based framework is proposed to extract the power lines and pylons, which consist of two main modules, i.e., the neighborhood dimension information (NDI) module and the neighborhood geometry information aggregation (NGIA) module. These two modules are designed to strengthen the model’s ability to portray local geometric details. Besides, an attention fusion module is investigated to further improve the NDI and NGIA features. Finally, a line structure constraint algorithm is proposed to identify individual power lines, where the power corridor is reconstructed using a polynomial-based algorithm. Numerical experiments are conducted based on two different power line scenarios acquired in mountainous areas. The results demonstrate the superior performances of the proposed method over several existing algorithms, where the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$F_{1}$ </tex-math></inline-formula> score and quality of the power line are 99.3% and 98.6%, and the results of the pylon are 96% and 92.4%, respectively. The identification rate of power line identification is above 98%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.