Abstract

Accurate diagnosis of neurodevelopmental disorders is a challenging task due to the time-consuming cognitive tests and potential human bias in clinics. To address this challenge, we propose a novel adversarial self-supervised graph neural network (GNN) based on graph contrastive learning, named A-GCL, for diagnosing neurodevelopmental disorders using functional magnetic resonance imaging (fMRI) data. Taking advantage of the success of GNNs in psychiatric disease diagnosis using fMRI, our proposed A-GCL model is expected to improve the performance of diagnosis and provide more robust results. A-GCL takes graphs constructed from the fMRI images as input and uses contrastive learning to extract features for classification. The graphs are constructed with 3 bands of the amplitude of low-frequency fluctuation (ALFF) as node features and Pearson's correlation coefficients (PCC) of the average fMRI time series in different brain regions as edge weights. The contrastive learning creates an edge-dropped graph from a trainable Bernoulli mask to extract features that are invariant to small variations of the graph. Experiment results on three datasets - Autism Brain Imaging Data Exchange (ABIDE) I, ABIDE II, and attention deficit hyperactivity disorder (ADHD) - with 3 atlases - AAL1, AAL3, Shen268 - demonstrate the superiority and generalizability of A-GCL compared to the other GNN-based models. Extensive ablation studies verify the robustness of the proposed approach to atlas selection and model variation. Explanatory results reveal key functional connections and brain regions associated with neurodevelopmental disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.