Abstract

We prove a Littlewood-type theorem for random analytic functions associated with not necessarily independent Gaussian processes. We show that if we randomize a function in the Hardy space H 2 ( D ) H^2(\mathbb {D}) by a Gaussian process whose covariance matrix K K induces a bounded operator on l 2 l^2 , then the resulting random function is almost surely in H p ( D ) H^p(\mathbb {D}) for any p > 0 p>0 . The case K = I d K=\mathrm {Id} , the identity operator, recovers Littlewood’s theorem. A new ingredient in our proof is to recast the membership problem as the boundedness of an operator. This reformulation enables us to use tools in functional analysis and is applicable to other situations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.