Abstract
Dimensionality reduction plays an important role in interpreting and visualizing high-dimensional data. Previous methods for data visualization overestimate the local structure and lack the consideration of global preservation. In this study, we develop a Gaussian process latent variable model (GP-LVM) for data visualization. GP-LVMs are one of the frameworks of principal component analysis and preserve the global structure effectively. The drawbacks of GP-LVMs are the absence of local structure preservation and the use of low-expressive kernel functions. Therefore, we introduce regularization for local preservation and an expressive kernel function into GP-LVMs to overcome these limitations. As a result, we reflect the global and local structures in low-dimensional representations, improving the reliability and visibility of embeddings. We conduct qualitative and quantitative experiments comparing baselines and state-of-the-art methods on image and text datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.