Abstract

We prove a Gaussian process approximation for the sequence of random compositions of a two-color randomly reinforced urn for both the cases with the equal and unequal reinforcement means. By using the Gaussian approximation, the law of the iterated logarithm and the functional limit central limit theorem in both the stable convergence sense and the almost-sure conditional convergence sense are established. Also as a consequence, we are able to to prove that the distribution of the urn composition has no points masses both when the reinforcement means are equal and unequal under the assumption of only finite $(2+\epsilon)$-th moments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.