Abstract

Knowledge-based systems such as expert systems are of particular interest in medical applications as extracted if-then rules can provide interpretable results. Various rule induction algorithms have been proposed to effectively extract knowledge from data, and they can be combined with classification methods to form rule-based classifiers. However, most of the rule-based classifiers can not directly handle numerical data such as blood pressure. A data preprocessing step called discretization is required to convert such numerical data into a categorical format. Existing discretization algorithms do not take into account the multimodal class densities of numerical variables in datasets, which may degrade the performance of rule-based classifiers. In this paper, a new Gaussian Mixture Model based Discretization Algorithm (GMBD) is proposed that preserve the most frequent patterns of the original dataset by taking into account the multimodal distribution of the numerical variables. The effectiveness of GMBD algorithm was verified using six publicly available medical datasets. According to the experimental results, the GMBD algorithm outperformed five other static discretization methods in terms of the number of generated rules and classification accuracy in the associative classification algorithm. Consequently, our proposed approach has a potential to enhance the performance of rule-based classifiers used in clinical expert systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call