Abstract
This paper introduces and evaluates the use of Gaussian mixture models (GMMs) for multiple limb motion classification using continuous myoelectric signals. The focus of this work is to optimize the configuration of this classification scheme. To that end, a complete experimental evaluation of this system is conducted on a 12 subject database. The experiments examine the GMMs algorithmic issues including the model order selection and variance limiting, the segmentation of the data, and various feature sets including time-domain features and autoregressive features. The benefits of postprocessing the results using a majority vote rule are demonstrated. The performance of the GMM is compared to three commonly used classifiers: a linear discriminant analysis, a linear perceptron network, and a multilayer perceptron neural network. The GMM-based limb motion classification system demonstrates exceptional classification accuracy and results in a robust method of motion classification with low computational load.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.