Abstract

A gauge theory of contact is presented, based on the general idea that the local deformation of the nucleon surface at contact should be gauged by the variation of curvature. A contact force is then defined so as to cope with both the variation of curvature and the deformation. This force generalizes the classical definition of surface tension, in that it depends on the mean curvature, but also depends on the variance of the second fundamental form of surface, considered as a statistical variable over the ensemble of contact spots. It turns out that the variance of the second fundamental form does not depend but on the metric of the space of curvature parameters, organized as Riemann space. This result compels us to review the definition of physical surface of a nucleon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.