Abstract

When incorporated into a top-hat electrostatic analyzer, a gate electrode enables the separation of ions by their mass-per-charge with modest mass resolution (M/∆M ∼ 10). Gated-time-of-flight (TOF) instruments avoid the energy straggling and angular scattering effects prevalent in foil-based detection systems, providing more pristine measurements of three-dimensional distribution functions of incident ions. Gated-TOF implementations are ideal for measuring the properties of low-energy (i.e., <100 eV) thermal ions in various space environments. We present an instrument prototype capable of separating H+, He+, O+, and O2+ in Earth’s ionosphere and demonstrate that in addition to providing species determination, precise operation of the gate electrode provides an electronically adjustable geometric factor that can extend a single instrument’s dynamic range by several orders of magnitude.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call